If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2c^2+2c-84=0
a = 2; b = 2; c = -84;
Δ = b2-4ac
Δ = 22-4·2·(-84)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-26}{2*2}=\frac{-28}{4} =-7 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+26}{2*2}=\frac{24}{4} =6 $
| 180=-5+10x+9x+1 | | 2x=5-3x^2 | | x+(x*3/7)=180 | | 7n–5=10n+13 | | 4+6x+6x=-128 | | 7=b-(-15) | | 9x-2x+56=9x+34 | | -6(x+4)-5=5(x+4)-10 | | 2/x-8=-17 | | 15.67+0.13x=16.42+-0.08x | | –7b+7b=0 | | 28z^2+47z=0 | | -36-9b=9b | | 15.67+0.13x=16.42+0.08x | | 4x/5+10=30 | | a-13=24 | | 1=−6+n | | 11v-35=4v | | 8x=4,000 | | /8x+1=65 | | (4y-4)-3y-52=180 | | -4m=-42+2m | | (4y-4)+3y-52=180 | | 3x+14–x+112=4x+134 | | -11x-6x=10 | | 15.67+0.13x=16.42-0.08x | | –13n=845 | | 20x+9=9x-7 | | 30+4x+10=180 | | -3z+-5=-21+5z | | 5n+1-3n+4=-2 | | 4x/9=8/6 |